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Abstract  We shall examine a model, first studied by Brockwell et al. [1982], which can be used to describe
the long-term behaviour of populations that are subject to large-scale mortality or emigration. Populations can
suffer dramatic fosses when disease, such as an introduced virus, affects the population, or when food shortages
oceur, due o overbrowsing or significant changes in climate. However, perhaps surprisingly. such populations
can survive for long periods and, although they may eventually become extinct, they can exhibit an apparently
stationary regime. It is useful to be able to model this behaviour. This is parsicularly true of the ecological ex-
amples which motivated the present study, since, in order to properly manage these populations, it is necessary
to be abie to predict persistence times and to estimate the distribution of population size. We shall see that al-
though our model predicts eventual extinction, the time t:ll extinction can be long and the stationarity exhibited
by these populations over any reasonable time scale can be explained using & quasistationary distribution.

. INTRODUCTION and recover quickly from catastrophic falls in sales.

Our starting point is a paper by Klein [1968] (see
aiso Schefier [1951] and Mech [1966]) that stud-
ics populations of reindeer and moose, which, af-
ter intreduction inte Alaska, have suffered substan-

~tial reductions in numbers owing to-overbrowsing -

combined with etfects of severe winters; the moose
population was additionally subject to Spruce Bud-

worminfestation, and later fire, The model we

shall describe, called the birth-death and carastro-
phe process, 1s particularly effective in modelling
these populations (sec Pakes [1987]). Another pos-
sible application of this work lies in the manage-
ment of fish stocks (Holling [19731). Although the
mode] predicts eventual extinction, the time till ex-
tinction can be long and the surprising stationarity
exhibited by the populations can be explained us-
ing a quasistationary distribution. It should be noted
that the model has possible applications outside the
realm of wildlife management. For example, i the
market piace one might wish to predict the trend in
safes of a certain product, which are affected by the
introduction of cheap imports or the introduction of
new technelogy. However, in these examples, and
this Hes in direct contrast to the ecological exam-
ples cited above, the product may be able to adapt
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Nevertheless, our model might stilt be appropriate
in instunces where such adaption is less marked.

2. THE CATASTROPHE PROCESS

“Weshall ose 4 continuous-tinie {time-homogene-

ous) Markov process (X (&), ¢ > 0) to model the
population, where X (¢} is a non-negative, integer-

population at time £. We shall suppose that the pro-
cess has transinon rates (0 = (g, .k > 0) given
by

G541 = Jpa, iz 0,
Y5 = —ip, i>0,
Uj,5-i = 7pbs, P21 <<,

Y
et

0 = jpz,izj by, =L
with ali other transition rates equal to (. Here p
and u are positive, by is positive for at least one value
of din{1,2,... handa+ 3, b, = 1. 1fj # k,
G5 has an interprefation as the instantaneous rate
at which the population size changes from 7 to k.
Thus, p can be interprated as the rate per capita at
which the population size changes and, given that a
change occurs, @ is the probability that this results
in the birth of an individual and b; is the probabil-
ity that this results in a catastrophe of size ¢ (that

_.valued random, variable indicating the size of the.



is the death or emigration of individuals). If, of
the by’s, only iy is positive, we recover the simple
linear birth and death process. Clearfy 0 is an ab-
sorbing state for the processand €' = {1,2,...}is
an Irreducible class, that is, every state in €' can be
reached by every other state in C. Thus if the pop-
ulation is initially O it wiil remain so, while if it is
initially positive it will either tend to Oorto oo . It
s well known and easy to prove (see for exampie
Pakes [[987]) that the probability of extinction ay,
starting with ¢ individuals, ts | for all ¢ € C if and
only 1f D, the expected increment size, given by

D=ua—-5db=1-3 i+ 1)k,

is less than or equal to O (here and henceforth, un-
marked sums shall be over i € ). The quantity D
can be thought of as a drift factor and the process
is said to be subcritical, critical or supercritical ac-
cording as 7 is negative, zero or positive. In the su-
percritical case extinction is of course still possible,
and the extinction probabilities can be expressed in
terms of the probabiiity generating function f of 1
minus the increment size. This is given by

Fls) = a+ 3 bistt

so that, for example, D = | - f/{I-} (< 1) It
follows trom Theorem 4 of Ezhov and Reshetnyak
[ 1983] (see also Pakes [1987]) that when D > §

ls| < 1,

i Ds
T y)st = e
2. ) T
Thus, writing b{s) = f(s) — s, we see that
. 5 Ds
TSR z.(_‘ngy T {;(S)- { )

it is interesting to note that ov; tends o (0 as { tends
to 0o; roughly speaking, the larger the initial popu-

“lation the less likely the population s to become ex-

tinct (in the supercritical case}. However, as Pakes
i 1987} notes, the convergence of «; to 0 can be very
stow, For example, it is easy to show, letting s 1 1
in (1) and using L Hopital’s rule twice, that

2oai = f'(1-)/(2D) (2)

and that this is finite if and only if the second mo-
ment of the increment distribution is finite. Later
we shall use (1) and (2), together with this condi-
tion, when evaluating quasistationary distributions,

The function & we have infroduced appears in con-
nection with the theory of Markov branching pro-
cesses. Indeed these processes are intimately related
to the birth, death and catastrophe process, a fact
which was established and exploited effectively by
Pakes { 1987]. We shali use one important fact from
this theory: that (s} = 0 has a unique solution o
on [0,1]. Further,oc = 1if D > 0, and 0 < 0 < 1
i D < 0, and s0 b(s) > Oon [0,0] . Indeed, & is
convex on this interval.

3. QUASISTATIONARY DISTRIBUTIONS

We shall use two types of quasistationary distribu-
tion to describe the long-term behaviour of the pro-
cess. In particular, we shall be concerned with the
existence of the limits

IE1im PX()=71X0) =14, X{t) >0,
00

Xt +r)=0forsomer >0} (3)

and

lm lim P{X{#) = j|X(0) = ¢, X (#+5) > 0,

fed o0 5400

X{t+s4r)=0forsomer >0) (4)

for<,§ € C. Thus we shall seek the limiting prob-
ability that the population size i3 j, given that ex-
tinction has not occurred, or {in the case of (40 will
not oceur in the distant future, but that eventuvaliy it
will; we have conditioned on eventual extinction to
deal with the supercritical case, where this event has
probability less than 1.

Conditions for the existence of (3} and (4) for a
general transient Markov process were obtained by
Vere-Jones | 1969] and Flaspohler { 1974], However,
these conditions are expressed in terms of the tran-
sition probabilities of the process, which are sel-
dom available. For conditions in terms of the fransi-
tion rates, see Pollert [1986], Pollett [1988], Pollett
[1989], and Parscns and Pollett [1987], We shali at-
tempt to describe these results in a way that is appro-
priate to the present context, avoiding reference (o

tite plethora of nomenclature Used in Markov chain

theory. We shall start by considering the two eigen-
vector equations

ijq”\ e ;}_‘;‘?.”’;‘“. J @(} e (5)

and

2o Gy = =g, € G, (6)
where ¢ > U and now ' can by any irreducible
class. In the first instance we shall seek solutions
m o= (my, j € C)andz = (x;, j € (), each
with positive entries, for some ¢ > 0. These are
the positive feft and right eigenvectors of (), the
transition-rate matrix restricted to ', correspond-
ing to the eigenvalue —p . I ' is a finite set,
their existence is guaranteed, at least for the eigen-
value —A with maximum real part {see Darroch and
Seneta [19671). If C Is infinite, as is the case in
the present application, the situation can be consid-
erably more complicated. For example, it might not
be possible 1o obtain positive solutions for any value
of © = 0. However, Vere-Jones 11969] has shown
that for quasistationary distributions to exist, it is
necessary that posilive eigenvectors exist for some
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i = . Thus, we shall assume this to be the case
in the present context. If A is the maximum value
of i for which positive eigenvectors exist, then we
shalt denote these by ym and w. Proposition 3.1 of
Pollet: [ 1988] can now be restated for our purposes
as follows:

Proposition 1. If ¢} is regular, then

{1y Y myry converges, and either 5y con-
verges or {up} is bounded, then (4) exists
and defines a proper probability distribution
73 = (71‘52)-, j € ) over €, given by

{2} TN,J‘.'IIJ‘ ,
wy = gm——,  § & . 7
i S gy JE )

(i) ifinaddition ¥ mygay converges, then (3) ex-
ists and defines a proper probability distribu-
tion 78 = (x") j € C) over €, given by

oo

OTT _
Trf,—“:~~~-~-~——-——-"I e e C (&)
S g,

Remarks., The condition that () be regular can
be checked using Reuter’s conditions {see Reuter
[1937]). It wall certainly be satisfied in the present
context if we assume, as we shali, that the decre-
ment distribution has finite mean, that is §'{1-) <
(0. The condition that 3 myxy converges is neces-
sary for {7} to define a proper probability distribu-
tion over ', However, its real importance lies in the

fact that it is sufficient for (' to possess the property

of A-positive recurrence {Kingman [1963]) which,
for transient processes, is a notion analogous to pos-
iive recurrence for stationary processes. Indeed, in

- arder-to-verify-A-positive-recurrence;- it -suffices-to -

show only that, for some @ > {) and correspond-
ing positive eigenveciors m and x, Y mypre < 00
(this follows from Theorem 5.2 of Pollett [ 19887F).
Once A-positive recurrence 18 established, Corol-
fary 5.1 of Pollett [1988] telis us that A, the max-
tmal value of g, is the so-called decay parameter
of £ (Kingman [1963]); it determines how guickly
the transition probabilities p;x(3}) = P{X{t} =
ELX(0) = j4) tend to 0 as 7 tends to 0. It then
follows, from Proposition 3 of Tweedie [1974], that
positive eigenvectors must exist when g = A

4. GEOMETRIC CATASTROPHES

Before proceeding to the general case, let us exam-
ine the important special case of when &; takes the
form by = b(1—q)g' ™, j = 1,2,... whereb > 0,
0 < g < land ¢+ b = 1. Thus, given that a jump

aceurs inthe size of the population, this is a birth

with probability o or a catastrophe with probabil-
ity b. If a catastrophe oceurs, its size has a geometric

distribution. Notice that if ¢ = 0 we recover the lin-
ear birth and death process. We shall first soive (6),
which in this case can be written as

J
ooty — Gip— @+ 3 jpbiszy = 0, (9)
k=0

for 7 > 1, with the understanding that x5 = 0. Sub-
stituting for b;, multiplying by s/ 1! and then sum-
ming these eguations, yields an expression for the
generating fusction X, defined by X (s) = 3_ ap s,
of any solution = = {x;, § > 1). The expression
has a different form depending on the value of D,
which is

D=a—b/(1L—q)=bla/b—1/(1-q)),
because b(s) has the form

bls) = {1 = gs) (b +qa)s® — (L +ga)s + a}
=a{l — sl —{g+b/ajs)/(1 - gs).

It can be shown, although the details are somewhat
tedious, that if D =0

L slmgs [ ali—g)s
X(s) = a1 — gyi-f P ( pafl — 5)) > (10)

where 8 = ng/{pa), while if D # 0

s(l — qs)

s ayrs - @b/ )™ an

X(s) =

where cx = u/{pD) and

A= .
* I-g (b+fw)

The generating function is well defined for ¢ < o

?
+

where o, the unique solution of b(s) = 0on {0,137

1§ given by

i£D >0,
if D < 0.

17
/(b +qa},

We can now determine a candidate for the maxi-
mum value of p for which there exists a positive
right eigenvector by letiing s T ¢ in (10) and ¢11).
We see that 3 2, o® converges to 0 if either D > 0
anda > 1, D < Oand @ > 1, or D = 0 and
> 0 Ifeither D > 0anda = 1, or D < 0 and
£ = 1, then the series converges to a positive num-
ber while, in the remaining cases it diverges. Thus,
if 14 exceeds A, where

oD, D >0
A=< 0, D=0,
—b" D{1 — g){b +qa), #D <0,

the series converges to 0. It follows that if © has
non-negative entries, they must all be equal to 0.
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However, we cannot yet deduce that A is maximal
in the required sense. It is first necessary to show
that, when g == A, & has positive entries. We shall
do this by inverting the generating function X. Af-
ter some straightforward arithmetical calculations,
we find that i, normalized so that z; = 1, is given
by

(7 2
- i1 vHi-1
0 > 0, where r = af{(b+ga) and vy = {1 —~
grif(1—g) w; =q+ (1 —g)jif D =0, and,

L R AT R e iUy
o j=1 d44-1

it 1 < 0, where § = 1/v. Clearly x; > 0 for each
4 = 1. It now remains to show that when g = A
there exists a positive left eigenvector m such that
S gy, converges. Eguations (5) take the form

(k= 1)pam—1 — (kp = pymy

+ > dphigmy =0, (12)
Jzk41

for & = 1, with the uaderstanding that mgy = (. On
substituting for (h;, 7 > 1), it is easy to show that
the positive vector m given by m; = al,j > 1, sat-
isfies (12) with p = A, and this is true whatever the
signof D 1t follows that the generat.éng function U,
defined by U(s) = Y mypzis®, can be evaluated in
terms of the neneiaung function for x cbtained on
setting 1 equal to A, since clearly U{s) = X{os),
s < 1. However, if D # 0, 3 xpof converges,

swhich is o say that 3 mpay converges, Thus, we

have established, at least in the non-critical case,
that A is maximal.

--We can now-use Proposition-1 to prove the existence -

of the quasistationary distribution # %) when D # 0.
It is easy to see that ¥ my converges if D < 0
{o < 1), whileif D > 0 (¢ = 1}, 3 =4 converges
implying that {z, } is bounded. Thus the conditions
of Part (i) of the proposition are satisfied for D +#
U and we can deduce that (4) exists and defines a
proper probability distribution 7{% = (71',52), i€
(7, given by )

(2) G'j'?"j YNe:
] T e ¥ 4. 13
m S kg JE (3)

The denominator is X (o—) and this can be calcu-

fated explicitly from (11} after setting @ = 1 if

D> 0and § = 1if D < 0. On substituting
into {13}, we arrive at the following explicit eval-
uation of the quasistationary distribution 7{2/:;

,_ '—' = {1 —g)(r — E)Hﬂv,,. — {7+

('} wE-.7~1) ”f+(1“qr)(J”1)
].*”1 ;+_}—1

it D > 0and

Trj(z) = (1 = gr)(1 — r) ol

Mmjml)m(l—q)(jw}
j-1 S+j—1

it 7 << 0. It is interesting to note that on setting

= 0 we obtain a result for the linear birth and
death process: we see that if ¢ 3 b then (4) exists
and is given by #(* = (r — 1)%jr~ U+ if 5 1,
and Tt‘j(-g) = (1-r)?jr = ifr < 1, wherer = a/b.
This is consistent with the results of Pollett [ 1988].
We shall now prove that it D £ 0, the other kind
of quasistationary distribution exists as well. To do
this, we shall need to check that the condition men-
tioned in Part (i) of Proposition 1 is satisfied. First
observe that i [J < {), then oy, the probability of ex-
tnction starting with a population of size 4, is equal
to 1, and s0 the condition 18 satistied and the exis-
tence of (3) in this case is automatic. Clearly 7™ is
the geometric distribution given by

V=@l st (14)

D > 0 we are required to establish that the series
Yoty = 3 g (13

converges. In view of (2) it suffices to check
that {1~} < co {equivalently H"(1-) < o).

On differentiating &{s) twice we get b"(1-) =
2b/(1—q)®. Indeed, it is easy to invert (1). In

doing so we find that o is proportional to. r7f Tt

foliows that (3) exists and again defines a geometric
distribution. This is given by 71 = (z{/, j > 1),

_where w{ ) = (r—=1r 9. Ifg =0thenr = a/band

the spemﬁed quaﬁstatmndry dlsmbulmns are con-
sistent with those found in Pollett [1988] for the lin-
ear birth and death process,

5. THE GENERAL CASE

Perhaps surprisingly, the process with a general
catastrophe size distribution can be handled with lit-
tle mare difficulty. Indeed, it is possible to follow
steps anatogous to each of those performed above
in connection with the geometric case. First, if is
easy to show that the generating function X of any
solution to (93 can be written

Xis) = exp{—pB(s)), s<o, {16

o)

where, for s < o, Bls) = p! [T dy/bly). (Re-
call that o i the unique solution to (s} = 0 on
[0,1], and that o = 1 or 0 < ¢ < 1 according as
D= b1 ) 18 non-aegative or negative.) Now, if
we let s T o in {16), we find that Z xiol diverges
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if 1 = 0. while if Y ;07 converges it is neces-
sary that the integral 7 dy/b(y) diverges. Regret-
tably, 1" HOpital's rule is of iittle help to us in eval-
vating this sum, for the derivative of exp(—pB{s))
is —{u/ipb{s)))exp(~pB(s}). However, we can
say that if 5 ;07 converges o a positive number,
it is necessary that p = A, where A = —pb'(o~)
(> 4. Let us now consider the lelt eigenvector
equation (12). If one atternpts a solution of the form
iy = &, where ¢ > 0, then the & = 1 equation
implies that o = —pb' (t—) and the other eguations
imply that b{t) = 0. Since we require u > 01t i3
necessary that &' (£—) < (i. Thus, for m to be of this
form it is necessary that ¢ = o and p = A, We have
shown that when g = A, (12) admits the positive
solution m = (mi;, § > 1}, givenby m; = o7, no
matter what the form of {6;, § > 1). It follows that
the convergence or otherwise of 3~ myz, depends,
as before, on the behaviour of X near s = . i we
can establish that this series converges and that A
ts maximal in the required sense, then, by Proposi-
ton 1, (4) exists and defines a quasistationary dis-
tribution #(*) = (7, (2) , § = 1) given by (13). Fur-
ther, the t,‘ux{enca m‘ {3) will then be automatic, at
least when D > 0, since then ¢y = 1 foralls > 1
and 0 < o0 < 1, the quasistationary distribution
il = (n‘_&”1 J > 1) will be given by (14) (a result
of Pakes {19871, If D > 0 then, on considera-
tion of (2) and {13), itis clear that if f"(i-} < =0
(equivalently b"{1-} < fx), ihen {3y will exist
and 7t will bc given by n = o/ ap.
follows that 74 will have a probdblilty gcnemtmw
~function-given-by ¢ e -

All of this rests on establishing that the series
Y yed converges and that A is the maximal value

-of - tor-which-positive eigenvectors-exist. It seems. -

difficult to obtain necessary conditions for the eon-
vergence of this series, However, in view of The-
orem 0.2 of Pakes [19871, it is clear that a suffi-
cient coadition for Y z;07 to converge is that ei-
ther D < 0, or, D > 0 and b can be written a3
bs) = D{t—s}+{1—s)?L{{1—s)"*), where L is
a slowly varyving function. Note that & has this form
in the case of “geomelric catastrophes™ because it
can be shown that

bix
(1—gl((1 =gz +q)

Liz) =

and so clearly L{xt) ~ L(z) for large ¢t. If one
ot these conditions can be satisfied, then it is possi-
ble to deduce that A 18 maximal using an argument
based on Theorem 5.1 of Pollet [1988]. Thus, we
have been able to establish the existence of the qua-
sistationary distribution (4) in the subcritical case,
and in the supercritical case when a regularity con-
dition on b is satisfied. In the subcritical case, (3)
also exists under these conditions, while in the su-
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percritical case an extra condition, that the decre-
ment distribution has finite second moment, is re-
quired.

6. DISCUSSION

To illustrate our results, we shall consider the ef-
fect on the mean popalation size (under the quasis-
tationary distributions} of varying the parameters of
the model. For simplicity, we shall restrict our at-
tention to the case where the size of catastrophes
has a geometric distribution. Let ¢ = a/b and
let ¢ = 1/{1l — g}, so that ¢ represents the ratio
of births to catastrophes, while ¢ (> 1) is the av-
erage size of a catastrophe. Observe that the pro-
cess is subcritical, critical or supercritical according
as ¢ is greater than ¢, equal to &, or less than ¢,
and that if ¢ < 1 the process cannot be super-
critical. Expressions for the mean of the two qua-
sistationary distributions can be obtained either di-
rectly, or by differentiating the appropriate generat-
ing functions. Let m™ and m®™) be, respectively,
the mean of 7' and the mean of #*). Then, it
is easy to show that m(*) = —¢ + " /(¢ — o) if
T<e<gom® = L+d+ ¢ le—¢)ife> ¢
P = b - 2~ 2o 4+ 290 (b - ) if L < o < r‘)
and m® = 14 20((1 + ¢ — D)/« (r- - &)}

¢ > . Recall that in the critical case no qudmatd-
tionary distribution exists; the Hmits in (3) and (4)
are identically G for all 7 and j.

Let us first determine the effect of varying ¢ with ¢
fixed. Figure | illustrates the results for the finear

~-birth and-death-process obtained on setting ¢ = 1.-

Notice that ! underestimates m‘ uniformly.

#ean
w

@ El
tana of binks to catastrephias ¢

Figure 1. Quasistationary distribution means
m} (solid) and m!* (dashed) for ¢ = 1.

This is indicative of the fact that, in general, {3} as-
signs more mass closer fo 0 than does (4) and, fur-
ther, it is consistent with the fact that (4) is more
appropriate for describing the behaviour of the pop-
ulation early in its evolution, well before extinction
occurs. Notice also that both means are large for



near-critical values of ¢, in which case genuine qua-
sistationary behaviour obtamns. If ¢ is large, the like-
lihood of extinction is rather smai yet, surprisingly,
both distributions assign all their mass near 1.

Next we shall observe the effect of varying the mean
catastrophe size ¢ when ¢ is fixed. In order to allow
for the possibility of a supercritical case, we shali
choose a value of ¢ greater thar i, say ¢ = 2, Fig-
ure 2 illustrates the results. The trends are similar fo

s 2 . v P W T
Expeatedt catusimphe size ¢
Figure |: Quasistationary distribution means
m ) (solid) and rn'?) (dashed) for ¢ = 1.

those already observed, in particular, for the super-
critical and near-critical cases. However, notice that
in the subcritical case the graphs cross and, for suffi-
ciently large values of ¢, m{* underestimates %),
Further, the limiting values as ¢ becomes large are

not the same, the difference between these values
being ¢». That both distributions assign nearly al]

thelr mass near i, is consistent with the fact that the
time tll extinction ts rather short.
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